On toric varieties which are almost set-theoretic complete intersections

نویسنده

  • Margherita Barile
چکیده

We describe a class of affine toric varieties V that are set-theoretically minimally defined by codimV + 1 binomial equations over fields of any characteristic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SET-THEORETIC COMPLETE INTERSECTIONS IN CHARACTERISTIC p

We describe a class of toric varieties which are set-theoretic complete intersections only over fields of one positive characteristic p.

متن کامل

Almost set-theoretic complete intersections in characteristic zero

We present a class of toric varieties V which, over any algebraically closed field of characteristic zero, are defined by codim V +1 binomial equations .

متن کامل

On Simplicial Toric Varieties of Codimension 2

We describe classes of toric varieties of codimension 2 which are either minimally defined by codim V +1 binomial equations over any algebraically closed field, or set-theoretic complete intersections in exactly one positive characteristic .

متن کامل

ar X iv : 0 70 5 . 43 89 v 2 [ m at h . A C ] 2 8 Ju n 20 07 On simplicial toric varieties of codimension 2

We describe classes of toric varieties of codimension 2 which are either minimally defined by 3 binomial equations over any algebraically closed field, or are set-theoretic complete intersections in exactly one positive characteristic.

متن کامل

2 1 Se p 20 05 Certain minimal varieties are set - theoretic complete intersections

We present a class of homogeneous ideals which are generated by monomials and binomials of degree two and are set-theoretic complete intersections. This class includes certain reducible varieties of minimal degree and, in particular, the presentation ideals of the fiber cone algebras of monomial varieties of codimension two.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005